

AIAA 2004-1232

Applications of Space-Filling Curves to
Cartesian Methods for CFD

M. J. Aftosmis M. J. Berger

Mail Stop T27B Courant Institute
NASA Ames Research Center 251 Mercer St.

Moffett Field, CA 94404 New York, NY 10012

S. M. Murman

ELORET
NASA Ames Research Center

Moffett Field, CA 94404

42nd Aerospace Sciences
Meeting and Exhibit

5-8 January 2004 / Reno NV

Applications of Space-Filling Curves to Cartesian
Methods for CFD

M. J. Aftosmis

†

Mail Stop T27B
NASA Ames Research Center

Moffett Field, CA 94404

aftosmis@nas.nasa.gov

M. J. Berger

‡

Courant Institute
251 Mercer St.

New York, NY 10012

berger@cims.nyu.edu

S. M. Murman

¥

ELORET
NASA Ames Research Center

Moffett Field, CA 94404

smurman@nas.nasa.gov

This paper presents a variety of novel uses of space-filling curves (SFCs) for Cartesian mesh
methods in CFD. While these techniques will be demonstrated using non-body-fitted Cartesian
meshes, many are applicable on general body-fitted meshes – both structured and unstructured. We
demonstrate the use of single

O

(

N

 log

N

) SFC-based reordering to produce single-pass (

O

(

N

)) algo-
rithms for mesh partitioning, multigrid coarsening, and inter-mesh interpolation. The intermesh
interpolation operator has many practical applications including “warm starts” on modified geome-
try, or as an inter-grid transfer operator on remeshed regions in moving-body simulations. Exploiting
the compact construction of these operators, we further show that these algorithms are highly amena-
ble to parallelization. Examples using the SFC-based mesh partitioner show nearly linear speedup to
640 CPUs even when using multigrid as a smoother. Partition statistics are presented showing that the
SFC partitions are, on-average, within 15% of ideal even with only around 50,000 cells in each sub-
domain. The inter-mesh interpolation operator also has linear asymptotic complexity and can be used
to map a solution with

N

 unknowns to another mesh with

M

 unknowns with

O

(

M + N

) operations.
This capability is demonstrated both on moving-body simulations and in mapping solutions to per-
turbed meshes for control surface deflection or finite-difference-based gradient design methods.

42

ND

 A

EROSPACE

 S

CIENCES

 M

EETING

AND

 E

XHIBIT

R

ENO

 N

EVADA

, 5-8 J

ANUARY

 2004

AIAA-2004-1232
1 Introduction
HE literature on numerical methods for Partial Differen-
tial Equations (PDEs) contains a wealth of diverse

approaches for improving cache performance, performing
domain decomposition, mesh coarsening and inter-mesh
solution transfer. The infrastructure and algorithms support-
ing these operations are frequently unrelated and usually
require different data structures and infrastructure to perform
each task. For example, a high-performance, distributed-
memory, unstructured mesh code may use Reverse Cuthill-
McKee (RCM) ordering for improving cache-performance,
recursive spectral bisection, or multi-level nested dissection
for domain decomposition,[1][2] a graph-based mesh
coarsener[4][3] and variety of fast spatial search data struc-
tures for inter-mesh interpolation, or solution transfer to re-
gridded regions of a subdomain.

For each task, these techniques offer superb performance,
and many of them are amenable to some degree of parallel-
ization. Nevertheless, development and maintenance of such
a diverse collection of tools requires considerable investment,
and when a substantial overhaul is necessary (e.g. moving a
code to distributed-memory parallelization) the level of effort
required will be significant.

Space-filling curves (SFCs) offer a unifying data structure for
all of these ends. Construction of these curves is extremely
inexpensive as the SFC index for any voxel in space may be
computed using only local information, and thus computa-
tion of indices may be performed in parallel. The asymptotic

time complexity of constructing the curve is therefore
bounded by the sort algorithm which orders the mesh along
the curve. This sort can be performed with standard sorting
routines such as quicksort which produces a method with
O(N log N) running time. After this initial sort, all subsequent
coarsening, decomposition, and interpolation can may be
performed with linear sweeps through the reordered mesh.

2 Space-Filling Curves
The central operation in using space-filling curves is a reor-
dering of the mesh using one of the dozens of well-docu-
mented space-filling curves. In this work we consider both
the Morton and Peano-Hilbert order[6]. Both orderings have
been explored in scientific computing in a variety of roles,
including the parallel solution of N-body problems in compu-
tational physics[7], algebraic multigrid[8], mesh generation,[9]

in the solution of PDEs and dynamic repartitioning of adap-
tive methods[10]. Figure 1 shows both Peano-Hilbert and
Morton SFCs constructed on Cartesian meshes at three levels
of refinement. In two dimensions, the basic building block of
the Hilbert curves is a “U” shaped line which visits each of 4
cells in a 2 x 2 block. Each subsequent level further divides
the previous level’s cells, creating subquadrants which are,
themselves, visited by (rotated) U shaped curves as well.
Similar properties exist for the Morton ordering which uses
an “N” shaped curve as its basic building block.

In three spatial dimensions the curves follow the same basic
construction rules, but the basic building block extends into
the third dimension with additional U or N-shaped turns. Fig-
ure 2 illustrates this 3-D construction for the U-order show-
ing: (a) the basic 2x2x2 building block (b) the same mesh
after one uniform refinement, where each segment of the
curve is replaced with an appropriately rotated basic building

† Research Scientist, Senior Member AIAA
‡ Professor, Member AIAA
¥ Senior Research Scientist, Member AIAA.

This material is declared a work of the U.S. Government and is not subject to copy-
right protection in the United States.

T

AIAA 2004-1232 – 42

ND

 AIAA A

EROSPACE

 S

CIENCES

 M

EETING

AND

 E

XHIBIT

block, (c) the curve after additional adaptive refinement of
cells near the back-south-west corner. Properties and d-
dimensional construction rules for these space-filling curves
are discussed extensively in refs. [11], [12] and [13].

Both orderings have locality properties which make them
attractive as mesh partitioners[10][9]. For the present, we note
only that such orderings have 3 important properties.

1. Mapping : The U and N orderings each
provide unique mappings from the d-dimensional
physical space of the problem domain Rd to a one-
dimensional hyperspace, U, which one traverses fol-
lowing the curve.

2. Locality: In the U-order, each cell visited by the
curve is directly connected to two face-neighboring
cells which remain face-neighbors in the one dimen-
sional hyperspace spanned by the curve. Locality in
N-ordered domains is almost as good[6].

3. Compact Construction: Encoding and decoding the
Hilbert or Morton order requires only local informa-
tion. Following the integer indexing for Cartesian
meshes outlined in ref. [5], a cell’s 1-D index in U
may be constructed using only that cell’s integer coor-
dinates in Rd and the maximum number of refine-
ments that exist in the mesh. This aspect is in marked
contrast to other partitioning schemes based on recur-
sive spectral bisection or other multilevel decomposi-
tion approaches which require the entire connectivity
matrix of the mesh in order to perform the partition-
ing.

To illustrate the compact construction rules for these order-
ings, consider the position of a cell i in the N-order. One way
to construct this mapping would be from a global operation
such as a recursive lexicographic ordering of all cells in the
domain. Such a construction would not satisfy the property
of compactness. Instead, the index of i in the N-order may be
deduced solely by inspection of cell i’s integer coordinates
(xi, yi, zi).

Assume is the bitwise representation of the integer
coordinates (xi, yi, zi) using m-bit integers. The bit sequence

 denotes a 3-bit integer constructed by interleaving
the first bit of xi, yi and zi. One can then immediately com-
pute cell i’s location in U as the 3m-bit integer

. Thus, simply by inspection of a
cell’s integer coordinates, we are able to directly calculate its

Figure 1: Space-filling curves used to order three Cartesian
meshes in two spatial dimensions: a) Peano-Hilbert or “U-
ordering”, b) Morton or “N-ordering”.

a)

b)

a.

b.

c.

Figure 2: U-order in three dimensions for (a) a basic 2x2x2
block of cells, (b) the same block after uniform subdivision
(c) cell order after refinement near the south-west-back cor-

M : R d
 U →

Figure 3: Morton order of an adaptively refined Cartesian mesh
around a 2-D airfoil.

xi yi zi, ,()

xi
1
yi

1
zi

1
{ }

xi
1yi

1zi
1xi

2yi
2zi

2…xi
myi

mzi
m{ }
 2 OF 12

AIAA 2004-1232 – 42ND AIAA AEROSPACE SCIENCES MEETING AND EXHIBIT

location,

M

(

i

), in the one-dimensional space

U

 without any
additional information. Similarly compact construction rules
exist for the U-order

[13]

.

In an h -refined Cartesian mesh, the finest cell can be used to
define the dimensions of a single voxel

1. All coarser cells

may then be reinterpreted as collections of this basic building
block and are referred to by the index of their lowest constit-
uent voxel. This interpretation leads to an integer indexing
scheme which can be used to address all cells in the computa-
tional domain. With this integer indexing scheme, the con-
struction rules in the previous paragraph can then be applied
to generate the Morton index, M(i), of all the cells in the
mesh. Figure 3 shows an example of the N-ordering on an
adaptively refined mesh around a 2-D airfoil.

Construction of the Peano-Hilbert index, H(i), follows a sim-
ilarly compact procedure. After computing the SFC indices
M(i) or H(i) for all the cells in the mesh, one simply takes
these indices as sort keys and applies any one of the standard
sorting algorithms (we use the quicksort algorithm from the
C standard library). Since all the other data required for con-
struction is local, the sort establishes the asymptotic bound
for runtime of the reordering and choosing quicksort gives
typical runtimes of O(N log N). In more concrete terms, com-
puting M(i) and H(i) and then sorting cells and faces takes
under 4 seconds per million cells on a 2Ghz Pentium 4.

3 Mesh Coarsening
The recursive nature of the SFC ordering makes it a natural
choice for a mesh coarsener for h-refined meshes. In the
same way that higher-order SFCs are generated by replacing
segments with the basic U or N building block, the children
produced by h-refinement replace their parent cell in the
mesh. Since these children are sorted according to the local
SFC they will all be nearest-neighbors on a contiguous seg-
ment of the SFC in the space of the curve U.

Figure 4 illustrates this observation in two-dimensions. Fig-
ure 4a shows the baseline multilevel mesh as it comes out of
either the mesh generator or adaptation module. Frames (b)
and (c) show the same mesh after two successive coarsen-
ings. Cells in these meshes are ordered using the N-ordering,
and their indices in the SFC order are shown. In fig. 4a cells
22, 23, 24, and 25 all lie adjacent to one another in the 1-
dimensional hyperspace of the curve, U.

The coarsening algorithm proceeds with a single traversal of
U with a running index i and testing if the cell at U(i) is con-
tained within the same parent as the cell at U(i + 1). When a
contiguous group of cells are found that all coarsen into the
same parent cell they are agglomerated into that parent. If
any of the siblings in a contiguous set are further subdivided,
then all siblings of the set are “not coarsenable” and get
injected into the coarse mesh without modification.

The first coarsening of the mesh in fig. 4a produces the mesh
in fig. 4b. Cells 22-25 are coarsened in this first pass to pro-
duce cell 10 on the mesh in frame (b). Note that while cells
20, 21 and 26 are all children of the same parent, they are not
coarsenable since 22-25 are one level finer. The next coarsen-

ing pass produces the mesh in frame (c). Since cells 8-11 on
mesh (b) were all siblings, they now coarsen to produce cell 5
on the mesh shown in frame (c).

Figure 4: Mesh coarsening example using Morton ordering. The
fine mesh in (a) is coarsened 2 times using the same SFC.

(c)

(b)

(a)
 3 OF 12

1. By analogy with “pixel”, the smallest distinguishable box-
shaped volume of 3-D space.

AIAA 2004-1232 – 42

ND

 AIAA A

EROSPACE

 S

CIENCES

 M

EETING

AND EXHIBIT
Figure 5 shows an example in three dimensions. In this
example, a 4.5M cell adaptively-refined mesh around two
surface ships has undergone 4 cycles of coarsening by
agglomeration along the SFC. The final mesh shown in the
lower right frame of the figure contains 4500 cells. In prac-
tice, typical coarsening ratios for the algorithm are in excess
of 7 on realistically complex problems.[16]

4 Domain decomposition
The mapping and locality properties that are exploited for the
single-pass mesh coarsener described above make SFCs a
natural choice for partitioners on hierarchical
meshes.[8][9][15][16] Figure 6 illustrates these mapping and
locality properties for an adapted two-dimensional Cartesian
mesh, partitioned into three subdomains. The figure points
out that for adapted Cartesian meshes, the hyperspace U may
not be fully populated by cells in the mesh.

The quality of the partitioning resulting from U-ordered
meshes have been examined in ref. [10] and were found to be

competitive with respect to other popular partitioners.
Weights can be assigned on a cell-by-cell basis. One advan-
tage of using this partitioning strategy stems from the obser-
vation that mesh refinement or coarsening simply increases
or decreases the population of U while leaving the relative
order of elements away from the adaptation unchanged. Re-
mapping the new mesh into new subdomains therefore only
moves data at partition boundaries and avoids global remap-
pings when cells adaptively refine during mesh adaptation.
Recent experience with a variety of global repartitioners sug-
gest that the communication required to conduct this remap-
ping can be an order of magnitude more expensive than the
repartitioning itself[14]. Additionally, since the partitioner just
inserts breaks into the U-ordered cell list on-the-fly, the entire
mesh may be stored as a single domain. At run-time, this sin-
gle mesh may then be partitioned into any number of subdo-
mains as it is read into the flow solver from mass storage.
One benefit of this approach is that a simulation begun on
some given number of CPUs may be restarted on a different
number of CPUs. Alternatively, when performing parameter
studies on a fixed mesh, each simulation may be run on a dif-
ferent number of CPUs - all sharing the same copy of the
input mesh file. In a heterogeneous shared timesharing envi-
ronment, where the number of available processors may not
be known at the time of job submission, the value of such
flexibility is obvious.

The SFC reordering pays additional dividends in cache-per-
formance. The locality property of the SFC produces a con-
nectivity matrix which is tightly clustered regardless of the
number of subdomains. Our numerical experiments suggest
that SFC reordered meshes have about the same data cache
hit-rate as those reordered using reverse Cuthill-McKee.

Figure 7 shows an example of a three dimensional Cartesian
mesh around the full Space Shuttle Launch Vehicle (SSLV)
configuration. This complex configuration includes the
orbiter, external tank, solid rocket boosters, and fore and aft
attach hardware. The computational mesh contains about
4.7M cells at 14 levels of refinement, and is indicated by a
single cutting plane passed through the mesh just behind the
SSLV geometry. The coloring of gridlines in the mesh shows
its partitioning into 16 subdomains using the U-order. Reor-
dering this mesh with the algorithm of §2 required 20 sec. on
a 2 Ghz Pentium 4, and preparing 4 levels of coarser meshes
for multigrid required 15 sec. on the same machine. Partition
boundaries are chosen to balance the load in each subdomain.
In determining work loads, cut-cells were weighted 2.1x as
compared to un-cut Cartesian hexahedra.

The partitioning in fig. 7 demonstrates how, even on adap-
tively-refined meshes, the partitioning tends to produce sub-
domains that are largely rectilinear. On a uniform mesh, an
appropriately chosen number of partitions would result in a
cubical decomposition of the computational domain. This
“best case” establishes the minimum ratio of communication
to computation (surface/volume ratio) for SFC partitioned
meshes. For any given number of cells, one can conceive of
an idealized cubical partitioner which would communicate
across some number of faces, Fc given by:

Figure 5: Mesh coarsening example in 3D using agglomeration
along the SFC. The finest mesh contains 4.5M cells while the
coarsest contains 4500 cells after 4 coarsenings.

a

b

c

d

e
f

g h

i j

k

lm

n o

pq

r

s

part 1

part 2

part 3

2-D physical space

1-D hyperspace

a b c d e f g hi j k lmnop q r s

part 1 part 2 part 3

Figure 6: An adapted Cartesian mesh and associated space-filling
curve based on the U-ordering of with the U-
ordering illustrating locality and mesh partitioning in two spa-
tial dimensions. Partitions are indicated by the heavy dashed
lines in the sketch.

M : R d
 U →
 4 OF 12

AIAA 2004-1232 – 42ND AIAA AEROSPACE SCIENCES MEETING AND EXHIBIT

 (1)

where

N

is the total number of cells in the domain and

P

is
the number of subdomains. The first term on the right is the
surface area of all the subdomains, while the second term

reduces this estimate by the surface area of the whole mesh
since no data is exchanged there. Real hierarchical meshes
coarsen rapidly away from geometry and have very few faces
on the domain boundary, thus the estimate of

F

c

 provided by
eq. (1) is a reasonable lower bound for evaluating the quality
of the partitioning provided by the SFC-based schemes.

Figure 8 examines the average partition statistics for a 1M
cell adaptively-refined mesh decomposed into 32 subdo-
mains. Even with this large number of subdomains on a rela-
tively small mesh, this figure shows that both SFC
partitioners perform well.

Figure 9 expands upon this example to show how the parti-
tion quality changes with mesh size and number of partitions.
Results are shown for both the 1M cell mesh of fig. 8 and that
of fig. 7 with 4.7M cells. In both cases the results from the
actual Hilbert partitioning track the surface-to-volume of the
idealized cubic partitioner reasonably well. Results in the fol-
lowing sections will show that this partitioning sufficiently
minimizes communication to offer near ideal speedups on
very large numbers of processors.

All meshes in the multigrid hierarchy are partitioned using
the same approach. Since each coarse mesh is produced fol-
lowing the SFC on its finer counterpart, these are automati-
cally generated sorted into SFC order. After partitioning the
fine mesh the stack of coarse meshes are read in one-at-a-
time and each is partitioned on-the-fly using the same load-
balancing approach.

Fc 6P
N
P

 2 3⁄

6N
2 3⁄

–=

Figure 7: 4.7M cell mesh around full SSLV configuration includ-
ing orbiter, external tank, solid rocket boosters, and fore and
aft attach hardware. Mesh color indicates partitioning (16 par-
titions, U-ordering).

Figure 8: Partitioning statistics for a 1M cell adapted cartesian
mesh decomposed into 32 subdomains with two different SFCs
compared with the idealized cubical partitioner described in the
text.

Figure 9: Comparison of subdomain overlap of two different
adaptively refined meshes with an idealized cubic partitioner
with varying numbers of subdomains.

 Figure 10: Consistency of partitioning on coarser meshes. Since all
meshes in the multigrid hierarchy are partitioned with the same
SFC, multigrid restriction and prolongation operators communi-
cate primarily fine/coarse cells on their same processor.
 5 OF 12

AIAA 2004-1232 – 42ND AIAA AEROSPACE SCIENCES MEETING AND EXHIBIT

In most graph-based approaches to mesh partitioning, repar-
titioning the coarse mesh offers no guarantee of good overlap
between coarse and fine partitions sitting on any given pro-
cessor. Since the intergrid transfer operators in multigrid
introduce communication between

every

cell

 in successive
meshes in the hierarchy, good overlap limits the amount of
off-processor bandwidth required for intergrid transfer. With
SFC partitioned meshes, all meshes are being partitioned by
exactly the same SFC, uniformly coarsened meshes would
have maximal overlap with their finer counterparts. In prac-
tice, the coarsening is modified by refinement boundaries and
coarsening rules, but uniform coarsening remains a good
model. Figure 10 demonstrates this by showing the coarsen-
ing of a multilevel Cartesian mesh around a reentry vehicle.
For simplicity, the mesh is shown partitioned into 2 subdo-
mains. The subdomain boundaries in this example show good
consistency of partitioning and 96% of the cells on the finest
mesh restrict to coarser cells residing on the same processor.
Only 4% of the communication for intergrid transfer needs to
go between processors.

Table 1 extends these observations to larger numbers of pro-
cessors. The table contains partition overlap statistics for the
4.7M cell mesh around the SSLV example in fig. 7. Overlap
statistics are included for 8 to 128 partitions, and the data
includes the average percentage of fine cells that restrict to
different partitions. With 8 partitions on the mesh, under 8%
of the cells need to communicate with different partitions.
This percentage grows as the mesh is cut into ever smaller
pieces, but at 64 processors nearly two thirds of the cells are
still on the same processor as their coarser counterparts. At
128 processors this number has dropped-off somewhat and
over half of the cells on the partition need to restrict to part-
ners off-processor. Note, however that by this point, the parti-
tions are

extremely

 small. On average, each contains only
37000 cells and requires less than 25 Mb of storage on each
processor.

4.1 Scalability and Performance

Scalability tests were conducted using the 4.7M cell mesh
from fig. 7. Flow conditions for the test had the SSLV at

M

∞

 = 2.6,

α

 = 2.09°,

β

 = 0.8°. Isobars of the discrete solution
are shown in fig. 11. The inviscid multilevel solver from [15]
and [16] was tested using both OpenMP and MPI communi-
cation libraries for both single and multigrid runs.

Figure 12 shows scalability results for this case on an SGI
Origin 3000 (600Mhz, Mips R14000 CPUs) without multi-

grid. Results are presented using both OpenMP and MPI for
off-processor communication. The MPI code was compiled
using the SGI’s native MPI library. Performance is linear
across the entire experiment with parallel speedups of 599
and 486 for the OpenMP and MPI codes (respectively) on
640 CPUs. On this many CPUs the even a 4.7M cell mesh
has only about 7350 cells per processor, thus the partitions
are extremely small. Despite this very fine partitioning,
results with both communication protocols are performing
well, and the SFC partition quality (cf. fig. 8) is more than

Table 1: Partition overlap statistics for the SSLV mesh in fig. 7.

Partitions Avg. # fine
cells

% Restrict to
different
partition

8 593824 7.9%

16 296912 12.2%

32 148456 19.3%

64 74228 32.7%

128 37114 57.2%

Figure 11: Isobars in discrete solution for SSLV configuration at
M∞ = 2.6, α = 2.09°, β = 0.8°. This case was used for scal-
ability results.

Figure 12:

Parallel scalability of single grid scheme on 4.7M

cell SSLV test case on SGI Origin 3000. Results are dis-
played using both OpenMP or MPI for communication
 6 OF 12

AIAA 2004-1232 – 42ND AIAA AEROSPACE SCIENCES MEETING AND EXHIBIT

adequate on this computing platform. To reiterate this point,
the plot also shows results for a 1.6M cell mesh distributed
onto as many as 256 processors (~6250 cells/partition). This
curve lays on top of the “ideal” curve over its entirety. The
slight performance advantage shown by OpenMP is probably
due to the additional time required in the MPI code to explic-
itly pack and unpack the messages passed between partitions.
All scalability runs were conducted with the machine in non-
dedicated mode (normal queuing system), and its expected
that some of the irregularity in the curves would improve
under dedicated usage.

Figure 13 shows a similar scalability study using 3-level mul-
tigrid (W-cycles) using the same test cases. The additional
communication load due to off-processor intergrid transfer
pointed to by Table 1 starts to become apparent on large num-
bers of processors. Nevertheless results are still quite good.
The OpenMP code achieves parallel speedups of about 514
on 640 CPUs while the MPI version shows about 392. The
first and second coarse meshes in this grid hierarchy have
700000 and 105000 cells respectively. These translate into
average cell counts of only 1100 and 180 cells per partition.

5 Inter-mesh Interpolation

The problem of efficient transfer of solutions or residuals
from one mesh to another comes up frequently in vehicle
analysis. In stability and control analysis, for example, one
may wish to “warm-start” a solution with a deflected control
surface from some undeflected baseline solution. In design
using finite-difference-based gradients, it is common practice
to compute a baseline configuration and then perturb the
shape to establish the gradients with respect to the shape
change. Since these perturbations are small, it makes sense to
re-use the pre-computed baseline to warm-start the perturbed
solutions. In moving-body simulations, when the body has
moved, the geometry is no longer the same and we are again

in a situation of needing to transfer the solution (and perhaps
residual) to a new, but nearby, mesh.

In general, cells in the new mesh do not have a one-to-one
correspondence with cells in the old mesh and some sort of
three dimensional interpolation is required. At worst, finding
interpolants may require searching over all the cells in the
mesh, and such brute force algorithms are not practical. With

N

 cells in the old mesh and

M

cells in the new mesh, any
algorithm that runs in

O

(

N M

) time is sure to be expensive
when both

N

 and

M

 are 10

7

 or 10

8

.

Even with parallelization and more sophisticated algorithms,
inter-mesh transfer can be expensive. For example, Ref. [17]
reports that finding interpolation coefficients on a 324000
cell mesh required 200 seconds on 16 CPUs. Other
approaches use binning, hashing or a variety of spatial tree
structures to limit the exhaustive searching needed for finding
interpolation stencils

[18][19]

. Since these data structures are
created for the interpolation, their construction cost (typically

O

(

N

log

 N

)) must be included in the interpolation time.

SFCs offer an attractive alternative for performing this trans-
fer. The key to this use is to recognize that for any Cartesian
meshes with the same bounding box and number of coarse
divisions, a single SFC describes all possible meshes cover-
ing the space. Essentially the SFC is playing the same role as
a spatial data structure that spatial trees or coordinate bisec-
tion play in other approaches. An important difference is that
rather than sorting into bins or traversing trees, the SFC sorts
the meshes into a unique order visiting each cell only once in
each mesh. With both meshes sorted, mapping from one to
another becomes a simple task of walking down the SFC
through both meshes in “lock step”, marking time in one or
the other as needed to accommodate nested refinement or
boundaries.

Figure 14 provides a more concrete view of this using an
example where we wish to map the data from the red mesh
(left) to the blue mesh (right). Both meshes are visited by the
same SFC. In the sketch, each cell is annotated with its SFC
index showing the order in which the mapping algorithm
sweeps the mesh. Cells 1-4

red

 and 1-4

blue

 are identical (same
SFC index, and same size), so the current position counters
for each of the two meshes will get incremented symmetri-
cally as we progress through these cells. Entering cell 5, we
note that 5

blue

 is larger than 5

red

 so the counter on the blue

Figure 13: Parallel scalability of 3-level multigrid scheme on
4.7M cell SSLV test case on SGI Origin 3000. Results are
displayed using both OpenMP or MPI for communication

 1 2

34

5

6 7

8 9

1314

15 16 1 2

34

5 9

1314

15 16

10 11

12

Figure 14:

 SFC used to map data from the red mesh (left) to the
blue mesh (right).
 7 OF 12

AIAA 2004-1232 – 42ND AIAA AEROSPACE SCIENCES MEETING

AND

 E

XHIBIT

mesh will not get incremented until it encounters the next cell
on the red mesh that is not contained. In this way we simply
mark time on the blue mesh until we encounter 9red which is
the first cell not contained by 5blue. Data in 5-8red all get
mapped to 5blue. 9red is the first uncontained cell and we
immediately notice that 9blue is smaller than 9red. This time
its the red counter that gets suspended while cells 9-12blue all
receive a prolongation of the data in 9red. Cells 13-16 match
one-to-one in both meshes and are filled by direct injection.

From this sketch of the algorithm several things are clear: (1)
Counters in both meshes increment monotonically. (2) At ter-
mination, both counters reach their respective maximums. (3)
Every step of the algorithm increments counters in either the
red, blue or both meshes. Thus if there are N cells in the red
mesh, and there are M cells in the blue mesh, the algorithm
has a run-time complexity of O(N + M), provided that the red
and blue meshes are already in SFC order. If the meshes are
not already sorted, the operation is bounded by the
O(N log N) complexity of the reordering.

Figure 15 outlines the situation when the red or blue meshes
contain internal geometry. In this situation, cells that are
completely internal to the geometry do not appear in the
meshes. This leaves a gap in the SFC indexing on the mesh
not covered by the extent of any cell. In the figure, cells 1-7
map one-to-one but there is a gap between 7red and 9red not
cover by the size of 7red. Thus no map exists for 8blue. Cells
9-11 map one-to-one, but 12red has no counterpart in the blue
mesh. Since we are interested in generating a mapping from
blue to red, 8blue gets assigned a nomap flag, and 12red sim-
ply gets skipped.

Figure 16 contains Algorithm M. with a detailed description
of the full mapping algorithm handling both mesh refinement
and changes in geometry. This algorithm is couched as a
driver loop over the blue mesh which recursively calls a map-
ping function that increments counters in the red and blue
mesh. Since it visits each cell in the red and blue meshes
once each, Alg. M. has run-time complexity of O(N + M)
which is linear in the total number of cells on the red and blue
meshes - provided that both meshes are already sorted in SFC
order. The algorithm makes use of the same prolongation and
restriction operators as used by the multigrid scheme. Direct
injection is used for prolongation of the flow state, while vol-
ume weighted averages are used for restriction. Since the
majority of the cells map either 1:1 or, as a coarsening/refine-
ment, the tail-recursion in M4.1.1 is rarely exercised. The

current algorithm simplifies the implementation at a nominal
run-time cost. When the blue mesh encounters a region for
which there is no mapping (due to a hole, or “solid” region,
in the red mesh) it gets a NO_MAP flag. When used for
restarts, these nomaps are populated with freestream quanti-
ties. In the case of time-dependent moving-body simulations,
nomaps indicate a cell that was uncovered by the motion of
the geometry over the timestep. In this case, the state vector
is set to zero, and the cell is filled by the space-time fluxes in
the moving-body scheme.

Since it is a linear-time procedure, Algorithm M typically
runs in seconds, even on meshes containing several million
cells. Timing examples were run on a 2 Ghz Pentium 4 desk-
top machine using meshes similar to the 4.7M SSLV case
used above. In these, tracing the space-filling curve with
Algorithm M takes about 0.5 seconds, and actually transfer-
ring the state vector using this map takes about 1.5 seconds.
Reordering cells and faces using the space-filling curve for
such a mesh takes about 20 seconds, however this one-time
cost was already paid during construction of the coarse
meshes on the receiving grid.

The real utility of the intergrid transfer comes when the
geometry is slightly modified and we seek a solution to a
nearby problem. Since Cartesian meshes are ridged, they do
not distort to follow the moving geometry, but instead result
in a mesh with a different, but nearby, sets of cut, volume and
interior cells. Examples of this exist in design, control sur-
face deflection, and moving body simulations.

1 2

34

5

6
7

9

1314

15 16

10 11

12

1 2

34

5

6 7

8
9

13

15 16

10 11

12

Figure 15: SFC used to map data from the red mesh (left) to blue
mesh (right) with internal geometry.

Figure 16: Algorithm M: Given blue and red meshes pre-
sorted in SFC order, create blue-to-red mapping,

driver loops on blue mesh

next_red = end_red = 0;
foreach hex in blue mesh{
blue2red[this_blue] = getMap(next_red, end_red);
next_red = end_red

}
getMap(this_red, end_red){
end_red = this_red;

1.if sameHex(this_blue, this_red) 1:1 mapping
1.1 map = INJECT from this_red to this_blue;
1.2 increment end_red;

2.if (this_blue within this_red) 1:N mapping, several
2.1 map = PROLONG from red to blueblues map to same red
2.2 DO NOT increment end_red

3.if (this_red within this_blue) N:1 mapping, several
 reds map to same blue

3.1 scan forward in red:
 while (end_red within this_blue) increment end_red;
3.2 map = RESTRICT from this_red to end_red into blue

4. Red and blue cells don’t overlap, must be a gap in SFC on one
 mesh or other, compare SFC index of both cells

4.1 if SFC(this_red) < SFC(this_blue) gap in blue
4.1.1 Increment start in red and call getMap

 getMap(this_red+1,this_blue)
4.2 if SFC(this_red) > SFC(this_blue) gap in red
4.2.1 Corresponding cell didn’t exist in red mesh

map = NO_MAP
return map;
}

 8 OF 12

AIAA 2004-1232 – 42ND AIAA AEROSPACE SCIENCES MEETING AND EXHIBIT
The first example considers deflection of the T-tail on a tran-
sonic business jet. Figure 17 shows a generic business jet
with T-tail, wings, pylons and nacelles. After computing the
baseline configuration, the movable horizontal tail is
deflected 2° to increase the nose-up pitching moment. The
convergence plot in Figure 18 monitors forces and the L1
norm of density in the discrete solution. At M∞ = 0.72 and
α = 2.8°, the baseline configuration converges by 150 (3-
level) multigrid cycles with about 6 orders of magnitude in
the L1 norm on a mesh with about 1.1M cells. This simula-
tion was run using full-multigrid startup, so the coarse grid
iterations are extremely fast. In this simulation, the lift vector
is almost aligned with the y-axis, and inspection of this com-
ponent of the integrated force vector shows that it stabilizes
after 40-50 cycles on the fine mesh. Convergence continues
until about 150 cycles.

The close-up of the tail in fig. 17 shows the deflection of the
tail about its hinge. The tail was deflected 2° followed by a
regeneration of a new volume mesh, a reordering and coarse

mesh generation. Total time for this process was under 1
minute on a 2Ghz Pentium 4. The solution from the unde-
flected case was mapped to the new mesh and warm-started
by the solver. Performance of this restart is tracked by the
second half of the convergence plot (see annotation in fig.
18). Upon restart, the force vector changes to its new value
by the end of the first multigrid W-cycle. Forces are con-
verged to 3 digits after only 7 cycles and 4 digits after 40
cycles on the new mesh.

Despite the presence of substantial geometry in the flow, the
baseline full multigrid solution for this case shows very rapid
convergence. Nevertheless the solution transfer and subse-
quent warm start offers an improvement. Since Cartesian
meshes of the baseline and deflected configurations are iden-
tical away from the geometry change and the meshes contain
roughly the same characteristics, residual levels on the
restarted mesh are directly comparable with those on the
baseline grid. The warm-started solution reached 10-4 in one
half the wall-clock time required by the baseline solution to
reach this point (including the time for FMG startup). These
results are typical for warm starts, and they usually offer sav-
ings on the order of 1.5-5 on configurations of realistic com-
plexity.[20][21]

6 Moving Body Simulations
As shown in the preceding section, solution mapping is a
convenience in design or in configuration studies. However in
moving-body simulations, the mapping of the solution (and
perhaps residual) at one time level to a new geometry and
mesh at the new time level is a necessity since this is the only
way the flow’s history gets communicated through the simu-
lation. The moving-boundary method of Ref. [22] requires
that at each implicit timestep, the geometry be moved, and
the Cartesian mesh be re-adapted and recut to the updated
geometry. The simulations are then advanced over the next
implicit iteration using a parallel multigrid scheme much like
that discussed in the present work.[22] Such simulations use
SFCs not only for the solution transfer, but also for the
domain decomposition and coarse mesh generation. This
strategy exercises all uses of the SFCs outlined in the present
paper.

An example of much recent interest comes from the unfortu-
nate loss of the STS-107 orbiter and crew on 1 Feb. 2003. In
this case, foam debris from the forward attach hardware (the
bipod ramp) was released at 81.7 seconds Mission Elapsed
Time (MET) at an altitude of 65,600 feet. Technically, this
case is interesting since an object measuring only inches
across is being transported around 80 feet to its impact loca-
tion. Conditions were Mach 2.46, α = 2.08°, β = -0.095°.
Figure 19 shows a composite image of isobars in this moving
body simulation done with the method of [22].

The mesh is similar to the SSLV mesh shown earlier, but with
additional refinement around the bipod, bipod ramps, and
foam debris. At the start of the simulation this mesh con-
tained about 4.6M cells. Figure 20 shows the mesh near the
symmetry plane and STS-107 Launch Vehicle geometry col-

Figure 17: Transonic business jet example with T-tail, pylons and
nacelles. Horizontal tail is shown in baseline position and
direction of 2° deflection is indicated by the arrows.

Figure 18: Convergence and force history of transonic business jet
example at Mach 0.72, α 2.8°. The plot shows convergence of
the baseline configuration as well as warm-start on the 2°
deflected mesh after solution transfer.

FMG startup

Restart on
 new grid
 after 2° tail
 deflection
 9 OF 12

AIAA 2004-1232 – 42ND AIAA AEROSPACE SCIENCES MEETING AND EXHIBIT
ored by mesh partition number. The figure includes frames
from four time levels of the simulation. The back-to-back
comparison of these provides some useful observations about
the behavior of SFC based mesh partitioners.

As alluded to earlier, at each timestep in the moving-body
simulation the mesh must be adapted to track the moving
geometry. This mesh then undergoes a single reordering
using the quicksort algorithm as described in §2. From there,
three coarse meshes are produced with the linear-time algo-
rithm of §3, and the solution gets transferred with the single-
pass method of §5. Efficient solution with the multilevel
method of [16] and [22] demands that the modified mesh be
load-balanced, and this re-balancing uses the same ordering
using the partitioning scheme of §4 for all meshes in the mul-
tigrid hierarchy. Over the course of the simulation, the mesh
size varied from 4.6 to about 4.8M cells, and the entire simu-
lation was run on 32 partitions. There were 136 timesteps in
the simulation.

The partition coloring in fig. 20 reveals the characteristic
“blockiness” of SFC-based partitioning in all the snapshots.
Comparing any two frames shows that while the partitioning
does change over the simulation due to the requirements of
load-balancing a dynamically adapting mesh, the partitioning
remains extremely consistent over the entire simulation. At
no time does a processor that was working on one portion of
the domain find itself integrating an entirely different set of
cells at the next timestep. For dynamically partitioned grids,
this observation implies that data residing in one node may
undergo only minor modification when some distant region
of the mesh is modified. The figure shows that even the parti-
tions containing the debris motion undergo only minor modi-
fication over the course of the simulation. The layout of the
problem on the machine is largely static, and while the parti-
tion boundaries do respond to mesh modifications, these
changes involve only a subset of the cells near the partition
boundaries. Since these boundaries are largely static, the
moving debris passes through 4 mesh partitions over its tra-
jectory (labeled a-d in the first frame of fig. 20).

Figure 19: Composite (multiple exposure) of isobars in moving-
body simulation of STS-107 debris event at 81.7 seconds MET
from Ref.[23], using the Cartesian method of Ref.[22]

Figure 20: Snapshots of mesh, geometry and mesh partitioning of
STS-107 debris case used in moving-body simulation of foam
debris impacting orbiter leading edge [23]. The debris travels
through several mesh partitions over its trajectory, while the
partitioning stays relatively constant despite load-balancing at
every timestep.

a

bc

d

debris in a

entering b

entering c

impact in d
 10 OF 12

AIAA 2004-1232 – 42ND AIAA AEROSPACE SCIENCES MEETING AND EXHIBIT

7 Summary
We have examined the use of space-filling curves in a variety
of roles in CFD including mesh coarsening, domain decom-
position, and inter-mesh interpolation. While these tech-
niques were demonstrated using non-body-fitted Cartesian
meshes, many are applicable on general body-fitted meshes.
Algorithms for all of these uses were shown to have linear
complexity after performing a single O(N log N) reordering
of the mesh. On current commodity desktop processors the
reordering typically takes under 5 seconds per million cells,
while coarsening, partitioning, or solution transfer are all
even faster.

On adaptively-refined Cartesian meshes, the coarsening algo-
rithm produces coarsening ratios of around 7 on practical
problems, while the partitioner demonstrated linear scalabil-
ity to well over 600 CPUs with as few as 7000 cells in each
partition. The single-grid scheme posted speed-ups of 599 on
640 CPUs on real-world problems with complex geometry.
Results were presented showing that in parallel multigrid
applications, the partitioner consistently arranges subdo-
mains on coarse and fine meshes with good overlap, thus
minimizing the bandwidth required for prolongation and
restriction. As a result, the parallel multigrid algorithm scales
nearly as well as its single-grid counterpart.

The inter-mesh interpolation algorithm has many practical
applications in CFD processes. These include warm-starting
solutions after modifying geometry in a configuration study,
obtaining Frechet derivatives in design, and as an intergrid
transfer operator on remeshed regions in moving-body simu-
lations. The algorithm also has linear asymptotic complexity
and can be used to map a solution with N unknowns to
another mesh with M unknowns with O(M + N) operations.
These capabilities were demonstrated both on configuration
studies examining control surface deflection and moving-
body simulations examining debris transport through the flow
around the full Space Shuttle launch vehicle during ascent.

8 Acknowledgements
The authors would like to thank G. Adomavicius for his con-
tributions to the reordering tools. Additionally we are grateful
to R. Gomez, D. Vicker (NASA JSC), S. Rogers and W. Chan
(NASA ARC) for their work on geometry used in the SSLV
simulations. Marsha Berger was supported by AFOSR grant
F19620-00-0099 and by DOE grants DEFG02-00ER25053
and DE-FC02-01ER25472.

9 References
[1] Karypis, G., and Kumar, V., “METIS: A software pack-

age for partitioned unstructured graphs, partitioning
meshes, and computing fill-reducing orderings of sparse
matrices.” University of Minn. Dept. of Comp. Sci.,
Minneapolis, MN., Nov. 1997

[2] Schloegel, K., Karypis, G., and Kumar, V., “Parallel
Multilevel Diffusion Schemes for Repartitioning of

Adaptive Meshes.” Tech. Rep. #97-014, University of
Minn. Dept. of Comp. Sci., 1997.

[3] Ollivier-Gooch, C., “Robust Coarsening of Unstruc-
tured Meshes for Multigrid Methods.” Presented at the
14th AIAA Computational Fluid Dynamics Conference,
Norfolk, Virginia, Jun. 1999.

[4] Venkatakrishnan, V and Mavriplis, D. J.,“Agglomera-
tion multigrid for the three-dimensional Euler equa-
tions.” NASA/CR-191595, 1995.

[5] Aftosmis, M.J., Berger, M.J., Melton, J.E.: “Robust and
efficient Cartesian mesh generation for component-
based geometry.” AIAA Paper 97-0196, Jan. 1997.

[6] Samet, H., The design and analysis of spatial data
structures. Addison-Wesley Series on Computer Science
and Information Processing, Addison-Wesley, 1990.

[7] Salmon, J.K., Warren, M.S., and Winckelmans, G.S.,
“Fast parallel tree codes for gravitational and fluid
dynamical N-body problems.” Intl. J. for Supercomp.
Applic. 8(2), 1994.

[8] Griebel, M., Tilman, N., and Regler, H., “Algebraic
multigrid methods for the solution of the Navier-Stokes
equations in complicated geometries.” Intl. J. Numer.
Methods for Heat and Fluid Flow 26, pp. 281-301,
1998. Also SFB report 342/1/96A, Institut für Informa-
tik, TU München, 1996.

[9] Behrens, J., and Zimmermann, J., “Parallelizing an
unstructured grid generator with a space-filling curve
approach, in Euro-Par 2000 Parallel Processing, 6th
International Euro-Par Conference, Munich, Germany,
August/September 2000, Proceedings, A. Bode, T. Lud-
wig, W. Karl, R. Wismüller (Eds.), Lecture Notes in
Computer Science 1900, Springer-Verlag, 2000, 815-
823.

[10] Pilkington, J.R., and Baden, S.B., “Dynamic partition-
ing of non-uniform structured workloads with spacefill-
ing curves.” IEEE Trans. on Parallel and Distrib. Sys.
7(3), Mar. 1996.

[11] Sagan, H., Space Filling Curves. Springer-Verlag, ISBN
0387942653. Sep. 1994.

[12] Schrack, G., and Liu, X., “The spatial U-order and some
of its mathematical characteristics.” Proceedings of the
IEEE Pacific Rim Conf. on Communications, Computers
and Signal Processing. Victoia B.C, Canada, May 1995.

[13] Liu, X., and Schrack, G., “Encoding and decoding the
Hilbert order.” Software - Practice and Experience,
26(12), pp. 1335-1346, Dec. 1996.

[14] Biswas, R., Oliker, L., “Experiments with repartitioning
and load balancing adaptive meshes.” NAS Technical
Report NAS-97-021, NASA Ames Research Ctr., Mof-
fett Field CA., Oct. 1997.

[15] Berger, M. J, Aftosmis, M. J., Adomavicius, G., “Paral-
lel multigrid on Cartesian meshes with complex geome-
try”., Proceedings of the 8th International Conference
on Parallel CFD, Trondheim Norway, Jun. 2000.
 11 OF 12

AIAA 2004-1232 – 42

ND

 AIAA A

EROSPACE

 S

CIENCES MEETING AND EXHIBIT
[16] Aftosmis, M. J., Berger, M. J, and Adomavicius, G., “A
parallel multilevel method for adaptively refined Carte-
sian grids with embedded boundaries.” AIAA Paper
2000-0808, Jan. 2000.

[17] Cliff, S.E., Thomas, S.D., Baker, T.J., Jameson, A., and
Hicks, R.M., “Aerodynamic shape optimization using
unstructured grid methods.”, AIAA 2002-5550, 9th
AIAA/ISSMO Symp. on Multidisciplinary Analysis and
Optimization, Sep. 2002.

[18] Plimpton, S., Hendrickson, B., Stewart, J., “A parallel
algorithm for interpolation between multiple grids.”
Proc. of the 1998 ACM/ICCC Conf. on Supercomput.
San Jose CA., IEEE Washington DC, ISBN 0-89791-
984-X 1998.

[19] Rogers, S. E., Suhs, N. E. and Dietz, W. E. ``PEGASUS
5: An Automated Pre-processor for Overset-Grid CFD,''
AIAA Paper 2002-3186, AIAA Fluid Dynamics Confer-
ence, June 24-27, 2002, St. Louis. Published in AIAA J.
41(6), June 2003, pp. 1037-1045.

[20] Nemec, M., Aftosmis, M.J., and Pulliam, T.H. “CAD-
based aerodynamic design of complex configurations
using a Cartesian method.” AIAA 2004-0113. Jan. 2004.

[21] Murman, S.M., Aftosmis, M.J., and Berger, M.J., “Sim-
ulations of 6-DOF motion with a Cartesian method.”
AIAA Paper 2003-1246, 41st AIAA Aerospace Sciences
Meeting, Reno NV, Jan. 2003.

[22] Murman, S.M., Aftosmis, M.J., and Berger, M.J.,
“Implicit approaches for moving boundaries in a 3-D
Cartesian method.” AIAA 2003-1119. Jan. 2003.

[23] Gomez, R.J. III, Aftosmis, M.J., Vicker, D., Meakin,
R.L., Stuart, P.C., Rogers, S.E., Greathouse, J.S., Mur-
man, S.M., Chan, W.M., Lee, D.E., Condon, G.L., and
Crain, T., “Debris transport analysis” Columbia Acci-
dent Investigation Board Report, Vol. II, Appendix D.8,
U. S. Government Printing Office, Oct. 2003.
 12 OF 12

	1 Introduction
	2 Space-Filling Curves
	Figure 1: Space-filling curves used to order three Cartesian meshes in two spatial dimensions: a)...
	Figure 2: U-order in three dimensions for (a) a basic 2x2x2 block of cells, (b) the same block af...
	Figure 3: Morton order of an adaptively refined Cartesian mesh around a 2-D airfoil.

	3 Mesh Coarsening
	Figure 4: Mesh coarsening example using Morton ordering. The fine mesh in (a) is coarsened 2 time...

	4 Domain decomposition
	Figure 5: Mesh coarsening example in 3D using agglomeration along the SFC. The finest mesh contai...
	Figure 6: An adapted Cartesian mesh and associated space-filling curve based on the U-ordering of...
	(1)
	Figure 7: 4.7M cell mesh around full SSLV configuration including orbiter, external tank, solid r...
	Figure 8: Partitioning statistics for a 1M cell adapted cartesian mesh decomposed into 32 subdoma...
	Figure 9: Comparison of subdomain overlap of two different adaptively refined meshes with an idea...
	Figure 10: Consistency of partitioning on coarser meshes. Since all meshes in the multigrid hiera...
	Table 1: Partition overlap statistics for the SSLV mesh in fig. 7.
	4.1 Scalability and Performance
	Figure 11: Isobars in discrete solution for SSLV configuration at M°�= 2.6, a�=�2.09°, b�=�0.8°. ...
	Figure 12: Parallel scalability of single grid scheme on 4.7M cell SSLV test case on SGI Origin 3...
	Figure 13: Parallel scalability of 3-level multigrid scheme on 4.7M cell SSLV test case on SGI Or...

	5 Inter-mesh Interpolation
	Figure 14: SFC used to map data from the red mesh (left) to the blue mesh (right).
	Figure 15: SFC used to map data from the red mesh (left) to blue mesh (right) with internal geome...
	Figure 16: Algorithm M: Given blue and red meshes pre- sorted in SFC order, create blue-to-red ma...
	Figure 17: Transonic business jet example with T-tail, pylons and nacelles. Horizontal tail is sh...
	Figure 18: Convergence and force history of transonic business jet example at Mach 0.72, a 2.8°. ...

	6 Moving Body Simulations
	Figure 19: Composite (multiple exposure) of isobars in moving- body simulation of STS-107 debris ...
	Figure 20: Snapshots of mesh, geometry and mesh partitioning of STS-107 debris case used in movin...

	7 Summary
	8 Acknowledgements
	9 References
	[1] Karypis, G., and Kumar, V., “METIS: A software package for partitioned unstructured graphs, p...
	[2] Schloegel, K., Karypis, G., and Kumar, V., “Parallel Multilevel Diffusion Schemes for Reparti...
	[3] Ollivier-Gooch, C., “Robust Coarsening of Unstructured Meshes for Multigrid Methods.” Present...
	[4] Venkatakrishnan, V and Mavriplis, D. J.,“Agglomeration multigrid for the three-dimensional Eu...
	[5] Aftosmis, M.J., Berger, M.J., Melton, J.E.: “Robust and efficient Cartesian mesh generation f...
	[6] Samet, H., The design and analysis of spatial data structures. Addison-Wesley Series on Compu...
	[7] Salmon, J.K., Warren, M.S., and Winckelmans, G.S., “Fast parallel tree codes for gravitationa...
	[8] Griebel, M., Tilman, N., and Regler, H., “Algebraic multigrid methods for the solution of the...
	[9] Behrens, J., and Zimmermann, J., “Parallelizing an unstructured grid generator with a space-f...
	[10] Pilkington, J.R., and Baden, S.B., “Dynamic partitioning of non-uniform structured workloads...
	[11] Sagan, H., Space Filling Curves. Springer-Verlag, ISBN 0387942653. Sep. 1994.
	[12] Schrack, G., and Liu, X., “The spatial U-order and some of its mathematical characteristics....
	[13] Liu, X., and Schrack, G., “Encoding and decoding the Hilbert order.” Software � Practice and...
	[14] Biswas, R., Oliker, L., “Experiments with repartitioning and load balancing adaptive meshes....
	[15] Berger, M. J, Aftosmis, M. J., Adomavicius, G., “Parallel multigrid on Cartesian meshes with...
	[16] Aftosmis, M. J., Berger, M. J, and Adomavicius, G., “A parallel multilevel method for adapti...
	[17] Cliff, S.E., Thomas, S.D., Baker, T.J., Jameson, A., and Hicks, R.M., “Aerodynamic shape opt...
	[18] Plimpton, S., Hendrickson, B., Stewart, J., “A parallel algorithm for interpolation between ...
	[19] Rogers, S. E., Suhs, N. E. and Dietz, W. E. ``PEGASUS 5: An Automated Pre-processor for Over...
	[20] Nemec, M., Aftosmis, M.J., and Pulliam, T.H. “CAD- based aerodynamic design of complex confi...
	[21] Murman, S.M., Aftosmis, M.J., and Berger, M.J., “Simulations of 6-DOF motion with a Cartesia...
	[22] Murman, S.M., Aftosmis, M.J., and Berger, M.J., “Implicit approaches for moving boundaries i...
	[23] Gomez, R.J. III, Aftosmis, M.J., Vicker, D., Meakin, R.L., Stuart, P.C., Rogers, S.E., Great...

	Applications of Space-Filling Curves to Cartesian Methods for CFD

